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We have investigated a specific technique for making (SNR)'* estimates by
using in-phase channel output averages to estimate signal and quadrature channel
output averages to estimate noise. We have produced bounds to determine the
accuracy of this technique when fluctuations of one standard deviation occur. Our
results show the estimate is relatively independent of actual input signal-to-noise
ratio (SNR) and can be improved only by increasing the number of samples in the

averages.

l. Introduction

The present design of a command detector being de-
veloped for NASA calls for a signal-to-noise ratio (SNR)
estimate that will be used for monitoring operations of
the detector. Naturally, we wish to know for a given
SNR and number of samples how good the estimate will
be. The samples are derived from in-phase and quadra-
ture outputs that are effectively data and error inte-
grators. As is to be expected, the command detector
circuitry must be-as simple as possible. For this reason
the absolute value of the in-phase and quadrature out-
puts rather than their squares will be sampled. Further-
more, since samples of the absolute value of the output
provide an estimate of the square root of the SNR rather
than the SNR itself, in this report we will be concerned
with the relationship between SNR, number of samples,
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and the estimated square root of SNR. We will use the
ratio of the mean plus standard deviation of the estimate
to actual (SNR)V? as a measure of the accuracy of the
estimate. This ratio will be determined as a function of
number of samples.

In Section II, we will model the probability distribution
of the in-phase and quadrature outputs and develop an
estimate for the square root of SNR. In Section III we
will give bounds for the mean and variance of this
estimate that converge to the exact values as the number
of samples becomes large. Because these asymptotically
tight bounds are easily calculated, they are presented
rather than the exact values whose integral representa-
tions required numerical integration for evaluation. Fin-
ally, in Section 1V we will discuss results and conclusions.
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Il. Probability Distribution of Samples and
Development of Estimate

A. Data Integrator Output

The output of the in-phase or data channel is inte-
grated for one symbol time T. The absolute value of the
resulting integration becomes a single sample so that
the ith sample X; can be expressed as

l/ £) + nit)] dt‘ 1)

where d(t) is the data assumed to be == A over one symbol
time, and n,(t) is the noise of the in-phase channel as-
sumed to be white Gaussian. Thus,

t;+T
Xi :‘ +AT +/ ny(t) dtl (2)
ti

The random variable

ti+T
Z,JE/ n,(t) dt
ti

is zero mean Gaussian with variance

ti+T ti+T Z\]0
0% = f dt / ds n,(t) ny(s) = 2T (8)
ti ti

where N,/2 is the power spectral density of n,(t). Since
the noise is assumed white Gaussian and the samples X;
are taken from non-overlapping intervals, they are inde-
pendent and identically distributed. From Egs. (2) and
(8) we have for the probability density

T | o [~ grta - aTY

Px(a) =< . exp[— Ti?(a + AT){]}’ a>0

0, a<0
(4)

where ¢ = N,T/2.

B. Error Integrator Output

The output of the quadrature or error channel is also
integrated for one symbol time and the absolute value
taken to form a single sample Y;:

Y, = ' [ :”T no(t) dt‘ (5)
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where ny(t) is the noise of the quadrature channel also
assumed to be white Gaussian with power spectral den-
sity No/2. Because the samples Y; are taken from non-
overlapping intervals, they are independent and identi-
cally distributed. Their probability density is obtained
from Eq. (4) with AT = 0:

2 a?
Bty 2P| "3z |r 20

0, a<0

Py(a) =

C. Development of Estimate

The output of the in-phé.se channel before the absolute
value is taken is

/'MT [d(t) + n(t)]dt = =AT + Z;; (7

The square of the mean of this output is (AT)? while its
variance (Eq. 3) is ¢ = N,T/2. Conventionally, the in-
put SNR is defined as the bit signal energy divided by
the one-sided noise spectral density or

AT 1 (AT)
N, 2 (N,T/2)

Thus the signal-to-noise ratio estimator of the command
detector will estimate the quantity

ATl

(AT)z X 2]/2 (8)

V= ) -

In Appendix A we show that the mean of the sample
X; (Eq. 1) is given by

X, = AT [1 + 2 (—“t—Tﬂ (9)

where the function €(AT/¢) is defined by Eq. (A-4) of
Appendix A. This function is sufficiently complicated so
that forming an unbiased estimate of AT using only the
{X,) is not feasible. Nevertheless, for input SNRs greater
than 8 dB (the design point input SNR for the command
detector is 10.5 dB), |€| < 0.0042. Consequently we can
neglect € and employ M samples of the {X;} to form our
estimate v of AT:

M

1
A—Z (10)

|||
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From Appendix A by setting AT = 0, we find the mean

OfY;:
— 1/2 1/2 1/2
@G W
™ T 2

Thus, an unbiased estimate of ¢ would be

1 n /2 M

However, ¢ is in the denominator of Eq. (8), so A~ will
not provide an unbiased estimate of 0. As we show in
Appendix B as M — o, A7 — ¢ so we will use A as
an estimate of ¢ even though it is not unbiased. Our
estimate W of (SNR)/2 is, therefore,

vA—l 1 M 1 P 1/2 M -1 1
Ezu2=<‘ﬁ§"f><ﬁ(§> ZY) P

(12)

where we note that {X;} and {Y;} are statistically inde-
pendent.

lll. Expressions for the Mean and
Variance of Estimate

The mean and variance of our estimate W are given by

— 1
W =vA" EI/_Z (133.)

0% = v* A2 — (7)2 (A7)* = ofok + o} (A7) + (7) 0k
(13b)
The mean of v is X; and is given by Eq. (9), while the

variance is 1/M times the variance of X;; so from Ap-
pendix A:

= Y ) ()]

(14)

S

In Appendix B we derive integral representations for the mean and variance of A~*, but here we will display only easily
calculated bounds for these quantities that are obtained from the integral representations:

1 M1 aM o\ 1 M1 M 2
7M+1+7(M—1)(M+3)<?) DR NP B Wy 7 g y ¥ g g (152)
1 MM+ 1 8M 1 M
"A"‘S?{(Mz—4)(M+4);F+(M+1)(M+4)?‘(M+1)2(M+2)}
1 8M2 2 (M+1)/2 4M 2 2 M+
ey (2) | tleenee) G) asb)

where the derivation requires M > 3. Since (1/2) (AT/0)? is the actual SNR, we have the following bounds on our

estimate W using Eqs. (9), (18), (14), and (15),

M
(SNR)MI:M o R Y VY 67 By

M @)(M/z][l + 2] <W< (SNR)“Z[MZ:I_ T e :‘)A{M - (%)] [1 + 25]
(16a)
, B4M(M+1) 1 8M 1 M _ 8M> 2\ W+1)/2 6a
“WS{(M2—4)(M+4) AT MTOM T 7 MMM+ (M= 1)(M+3)(7>
N [(M _ f)z‘(’M . 3)]” (%)”} {2_1ﬁ [1— 8(SNR)(e* + )] + (SNR) [1 + 26]2}
o e (2)] L-seNmE +al gy (1o

where € = €([2(SNR)]*/?) is the function defined by Eq. (A-4) of Appendix A.
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IV. Discussion of Results and Conclusions

We can measure the accuracy of the estimate by con-
sidering the ratio

W + ow
—(S'I':Tﬁ)—ﬁr (17)

where W,,; is the upper bound on the mean W of Eq. (16a)
and ow is the upper bound on the standard deviation of
Eq. (16b). This ratio should be close to unity if our
estimate is good and measures roughly how closely the
estimate approximates (SNR)/? when statistical fluctua-
tions of one standard deviation occur. We have plotted
this ratio in Fig. 1 as a function of M, the number of
samples, for input SNRs (as defined by Eq. 8) of 0, 5.25,
and 10.5 dB. The design point input SNR for the com-
mand detector is 10.5 dB so the 0 dB curve repre-
sents performance of the estimate when the input SNR
is 10.5 dB below design.

From Fig. 1 we notice immediately two features of the
estimate. First, the accuracy of the estimate is quite
insensitive to actual input SNR: the ratios are within
0.15 dB of each other for M > 16 for input SNRs differ-
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ing by 10.5 dB. Furthermore, ncreasing input SNR
above 8 dB has virtually no effect on the estimate. Sec-
ond, the accuracy is extremely dependent on the number
of samples: an estimation accurate to within 1.5 dB
requires about 45 samples while one good to within
0.5 dB requires more than 500 samples. The number of
samples M must be increased to improve the estimate,
and since the standard deviation of the estimate de-
creases as M-/ for M large, an extremely large number
of samples is required for very accurate estimates. Fig-
ure 1 gives quantitative support to these concluding
remarks.

Finally, we should note that previous analyses (Refs.
1-7) have arrived at essentially the same conclusions.
The estimate in this work is for SNR¥2? and is obtained
from averages of absolute values of in-phase and quadra-
ture channels. In the previous works the estimates were
for SNR and were obtained from averages of squares of
the relevant channel outputs. Intuitively, we might ex-
pect this work to agree qualitatively with the other
analyses, but, in fact, it agrees quantitatively as well.
For given input SNR and number of samples, averages
of either absolute values or squares provide estimates of
approximately the same accuracy (Ref. 7).
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Fig. 1. Plots of ratio of upper bound of estimate W,, plus one standard deviation o, to actual SNR!/ as a function
of number of samples M. The three plots are for input SNRs of 0, 5.25, and 10.5 dB defined by Eq. (8) of the text.
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Appendix A

In this appendix we will derive the mean and variance
for a random variable X whose probability density is
given by

@”_L)Tﬁ{exp[ o la- AT)Z]
Pxa) =9 4 exp[ - 2i2 (ot AT)Z:I} ,

0, a<0
(A-1)

a>0

I. Meanof X
The mean of X is given by

Ezf_: o Px(a) do.

o 1 du
= /_”/0 (ou + AT) exp[ -G :‘—————(2”)1/2
® 1 du
— AT — 1 |
+ [, o= anen] -5 fn
[ 2\ 1 AT\?
=(3) een] (%)
AT AT
rarfo( =) -o(7)]
where we use the function

(A-2)
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Since Q(—x) =1 — Q(x), we have

X = AT [1 + 2 <‘—¥>] (A-3)
where the function €(y) is defined by
1 1 1
f(y)—exp[—gy]!—,w—@(y) (A4)

and vanishes as exp [ —y2/2](1/y?) as y becomes large.

1. Variance of X

The second moment of X is

- [, 1/a— AT\ da
v= ool 3(57) Jom

® 1/a+ AT\? do.
+£ a eXp[_§< o > ](2_”0_2)1,2 (A'5)
If we substitute 8 = —o in the second integral, we have
= = 1/a— AT\? de .
Xz = /_wa exp[—§< = > ](2”"72)1/2 =¢® + (AT)
(A-6)

which is the second moment of a Gaussian random vari-
able with mean AT and variance ¢2. The variance of X is

ot ()
(A7)
where €(AT/o) is given by Eq. (A-4).
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Appendix B

In this appendix we wish to give integral representa-
tions and bounds for the mean and variance of A~
where

l. Integral Representations
We will give a representation for A%, where M > L + 1,

which insures convergence of the integral. From the

probability density for Y; (Eq. 6 of the text), we have
J— az + -+ + af
AF=f- fda,-- dauexp[——l—z‘;;—-l]

2 \¥z[ 1/x\1/2 X -L
X (;;) [‘M‘(é) Z}

(B-1)

where the subscript M indicates M samples. We will
utilize the following identity to obtain a representation
for [o, + -+ + ay]™*:

[eta+ - +ay]t=

/0“’ dgexp (— Ble+a+ - + oul)
(B-2)

Differentiating L times with respect to ¢ and setting
¢ = 0 gives

[as + -+ + au] & =

(L—il)Tﬂw B exp {— Blos + -+ + axl}
(B-3)

Substituting (B-3) into (B-1) and interchanging the order of integration gives

_ o\L/z ML ® © 1 2\
) o[l ) T

(GRS P )

where

(B-4)

The mean and variance of A~ are obtained from (B-4) using L. = 1,2.

II. Bounds for Mean and Variance

The bounds we will obtain depend upon the inequality of Ref. (8), which for our application states:

m

Applying this to (B-4) gives

[+ ki3

<—2->”2[x + (2 + 4)2] <'Ox) exp [-;- xz] < (%)' [x + (x2 + 8/x)1/2]

(B-5)

1 M L " 2 (M+L)/2 0 — l
O S I B A R e

M+L)/2 )
X<M)L2M(E>< L / 1 [x 4 (x2 + 8/x)12] ¥ dx

o ks
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(B-6)
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A. Bound for the Mean
Consider (B-6) when L = 2. The integrals involved can
be done by letting x = asinh (£), so

1 1
i

/w X [x + (xz + (12)1/2]“{ dx - WF— (B-7)

2

Thus, (B-6) becomes

1 4Mm? 2\ M)z __<1 4M2 [ 2\2
A —i\7 <A S EIE 2\

(B-8)

We can obtain the bound on A7} by relating A3 to A7

Consider (B-4) for L =2 and integrate by parts with
u = (Q(x))¥ and dv = exp [ —(1/2)x*M] x dx:

- (5(2) T foomlli]

YRS SR I

12—
o

M2 M
- +

o1 M (B-9)

—_—
o T

Using (B-9) with inequality (B-8), we find:

1 M n 1 4M 2 (M+1)/2<A_1
eM+1 " o (M—1)(M+3)\x "

1 M 1 4M 2
ST MIL T MDD (M8~ (B-10)

B. Bound for the Variance

Consider (B-6) when L = 3, Again letting x = asinh (¢)
simplifies the integrals giving:

® 2 2 2\1/2T-M — 2M 1
/0 x? [x + (x2 + a?)V/?] dx_(M2-1)(M2—9)a“"3
(B-11)
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So, (B-8) becomes

l 8M4 2 (M+3)/2 —
& O =1)(M? —9) (7) <Ay

1 8M+ 2\?
<smE=nor—o(>) B2

We can relate A7 to Aj?, Ay by using L = 8 in (B-4) and
integrating: by parts with u =2x(Q(x))¥ and dv=
exp [(1/2)x2M] x dx:

24 )+ ol ioli]

M [xQ"(x)] exp [ ; sz] dx}
)Y Towen(3]
-3 Towen(le)

. _1_ M3 — 1M _—

T e (T =1 M — 7 g A (B-13)
Using (B-13) with mequahty  (B-12) we find a bound for
the variance o%+(M — 1)=A7, —(A.1 )’

(M — 1) <L BMM—~1)

S oE M T 1) (F = 9)
1/M—1\2__ —
+ :( M ) A;ll - (AI—L{I—l)z

Using bound (B-10) for A;f, A;7, we finally obtain

(B-14)

1( MM +1) 1
M <z {(M2 DM D) =

8M 1 M>
eSS ET (M+1)2(M+2)}

1 8M?2 9\ (M+1)/2
?{(Mz —1)(M +39) <?>

" [(M = ;‘)A(JM 73) ] @)M

(B-15)
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